

Waste Sector CDM - Potential Opportunities for Pacific Island Countries

2nd CDM Capacity Building Workshop in the Pacific

Srikanth Subbarao

27-30 June 2011, Suva, Fiji

The Pacific Islands

- > 14 Countries
- 8 Territories
- > 30 million sq. km
- > 7500 islands
- Only 500 inhabited
- 10 million people

Pacific Waste Management Issues

- Population is concentrated in urban areas
- In recent years, number of problems in waste sector due to changes in the socio-economic conditions
- illegal dumping (in back yards, mangroves and lagoons)
- inadequate management of landfills and difficulty in acquiring more land for landfills
- lack of adequate handling of medical (contagious) and hazardous waste (persistent organic pollutants)
- poor economic viability of recycling (small market, difficulty of transport)
- contamination of groundwater and seawater from waste and domestic effluent

Pacific Waste Types

- Municipal Waste (including solid waste and wastewater)
- Industrial waste (including manufacturing)
- Hazardous wastes
- Construction and Demolition Waste
- Mining Waste
- Waste from Electronic and Electric equipment
- Packaging Waste
- End of Life Vehicles (ELV's) and Tires
- Agricultural wastes

Typical Composition of Solid Waste in Pacific

Source: S.C. Raj (2000), Solid waste education and awareness in Pacific Island Countries, Pacific Regional Waste Awareness and Education Programme, SPREP, Apia.

Kiribati Solid Waste Disposal Site

Honiara, Solomon Islands Waste Disposal Site

Majuro Dump site, Marshall Islands

Port Vila Dump, Vanuatu

CDM Opportunities in Waste Sector

Collection

- √ Rationalise the collection operations
- √ Alternative transportation
- ✓ Alternative fuels

Recycling

- opportunities
- Increase recycling rates

Incineration

- ✓Increase energy recovery
- √Recovery of ash / slag

Landfill

- ✓ Maximise landfill gas collection
- √ Promote landfill gas to energy

- ✓ Develop new recycling

Composting

- √ Optimisation of aerobic conditions
- ✓ Increase compost production

Hazardous Waste

- √Increase the production of substitute fuels
- ✓Increase recycling rates

The sector is not a major contributor to climate change: waste management activities generate ~ 3% of worldwide GHG emissions

But there are a number of possible actions to reduce these emissions

CDM Opportunities for Pacific in Waste Sector

Principle of GHG reduction Capture of methane (produced under anaerobic conditions)

Technologies

- Landfills
- · Closed reactors
- Methane recovery in wastewater treatment

Co-Products

Electricity, gas

Avoidence of methane production (through aerobic conditions)

- Composting
- Aeration of landfills

· Soil fertilizer

Solid Waste Management in Pacific

- Solid waste has been recognised as a problem for the Pacific Islands for many decades but it is only in the last ~10 years that significant progress has been made in addressing the issue
- One of the main driving forces for this progress has been the development of the Regional Solid Waste Strategy
- Priority concerns for the region include sustainable financing, integrated waste management, legislation, education and awareness, and capacity building
- Two other aspects that is proposed to be targeted, particularly from an international perspective are technology transfer and private sector engagement and support

Solid Waste Management & CDM

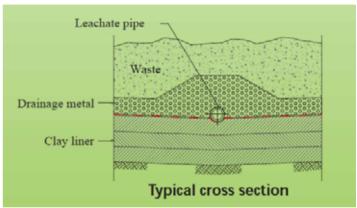
- Waste management is one of the potential sectors under the Clean Development Mechanism.
- Suitable technologies which are potential as both CDM activities and waste management options are composting, incineration, LFG capture/ avoidance, methane capture & utilisation from sewerage etc.
- Under CDM, waste management projects lead to both environmental protection, healthier community and income generation through the selling of carbon credits
- Capture and utilisation of biogas from landfill will also benefit in terms of renewable source of energy and associated economic benefits

Landfill Projects under CDM

- In order to qualify, it should be well planned and constructed.
- The amount of waste dumped should be known.
- > If possible, sorting of waste should be done to ensure that the dumped waste is largely composed of organic matter.
- Landfills are an efficient, proven and cost effective method of disposing organic wastes without releasing green house gases.
- In a well managed landfill, Biogas is likely to be produced over a period of 20 or 25 years.

Example of Potential Landfill CDM Project in Pacific – Naboro Landfill, Fiji

- Project of the Fiji Government, funded by the European Union and the Government of Republic of The Fiji Islands
- The site was opened in 2005
- Operated by HG Leach (Fiji) Limited, as wholly owned subsidiary of H.G. Leach & Co. Ltd, Waste managers, Quarrymen and Contractors of New Zealand



Naboro Landfill, Fiji – Key Aspects

- Landfill Infrastructure gate office, a certified weighbridge, administration block, workshop, main access roads, first stage protective clay liner, leachate drainage and treatment and storm water control systems
- General municipal and commercial wastes are accepted including some special wastes
- No hazardous wastes are accepted.

Naboro Landfill, Fiji – CDM Potential for Methane Capture & Utilisation

- Average quantity of MSW dumped per year since 2005: 50,400 tonnes
- > Data is not available for the composition of waste
- Sampling & analysis of MSW dumped need to be carried out using appropriate techniques to determine the average waste composition
- Waste composition (based on IPCC 2006 guidelines default values for Pacific countries):

Food: 60%, Paper/Card board: 6%, Wood: 2.5%, Textile: 1.5%,

Inorganic/other: 30%.

CDM Assessment of Naboro Landfill Project

- CDM sectoral scope
- Waste handling and disposal 13
- Scale of project
- Small Scale
- Source of emission reductions
- Methane recovery and flaring/electricity generation from landfill gas capture
- Baseline scenario
- venting the methane generated in landfill into atmosphere.
- Approved baseline methodology
- Type III.G Landfill Methane recovery (III.G./Version 6) and AMS ID Grid connected renewable electricity generation (Version 17)
- Preliminary estimate of emission reductions
- 14,000 17,000 tCO2e

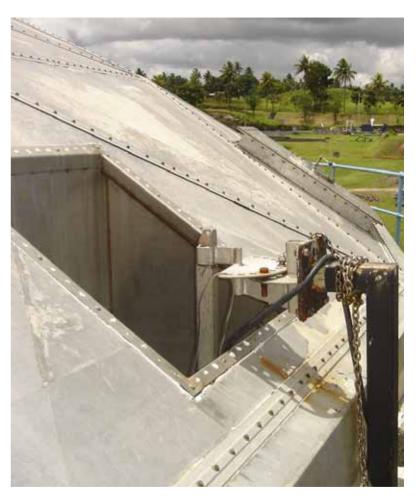
Domestic Wastewater Treatment in Pacific

- Sewage is the most significant source of marine pollution in the Pacific region
- Overflowing latrines, water seal toilets, septic systems, sewage treatment plants (if any) as well as the complete lack of sanitation facilities in some places
- In many PIC's human waste is normally collected in septic tanks at household level and transported to a dump site
- The grey water (kitchen/bathing) generally gets mixed with storm water and reaches the sea
- Improper sanitation including wastewater treatment is resulting in algae blooms and eutrophication in lagoons, dying reefs, contaminated drinking water wells and outbreaks of gastro-intestinal disease and cholera

Example of Domestic Sewage CDM Project in Pacific - Kinoya Sewerage Treatment Plant GHG Emission Reduction Project, Fiji

CDM Project Description

- Main objective: to recover and flare methane generated by the anaerobic decomposition of organic matter in sludge of an existing sewerage treatment plant.
- The project activity proposes to move from a potentially high GHG emission option of open air venting of methane to environmentally benign option of capture and combustion of methane
- Developed by Water Supply & Sewerage Department (WSD)/Water Authority of Fiji under the Ministry of Works, Transport and Public Utilities, Government of Fiji Islands.
- The project is located at Kinoya, Suva city, Viti Levu Island, Republic of Fiji Islands



Current scenario

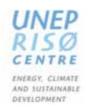
- Current Scenario
- The methane generated from decomposition of sludge in the anaerobic digester is currently being vented into the atmosphere.
- Proposed CDM Project intervention
- flaring by installing appropriate flaring equipment

CDM Assessment

- CDM sectoral scope
- Waste handling and disposal 13
- Scale of project
- Small Scale
- Source of emission reductions
- Methane recovery and flaring from anaerobic digestion of wastewater sludge
- Baseline scenario
- venting the methane in wastewater & sludge into atmosphere.
- Approved baseline methodology
- Type III.H Methane recovery in waste water treatment (III.H./Version 16) and
- Estimated annual emission reductions
- 22,000 tCO2e

CDM Project Status

- Project Design Document (PDD) has been developed by support from Technical Support Facility, ADB
- Certified Emission Reduction Purchase Agreement (CERPA) has been signed with Asia-Pacific Carbon Fund
- Project has completed Validation by DOE
- Project has been submitted for registration with the CDM Executive Board and has passed through "Completeness Check" & "Information & Reporting Check".
- The envisaged operational date for the project is during August/September 2011.


Recommendations

- Significant opportunities exists for developing SSC projects under waste sector in Pacific Island nations
- Potential projects include:
- Methane recovery and utilization from landfills & wastewater treatment anaerobic decomposition Electricity & Gas
- Methane avoidance aerobic treatment composting/aeration of landfills
 Soil Fertilizer
- Naboro landfill if developed as CDM project will be 'first of its kind' in Pacific and can be a role of model project.

Project website

www.acp-cd4cdm.org

Contact

Srikanth Subbarao,

